Active Tactile Object Recognition by Monte Carlo Tree Search
نویسندگان
چکیده
This paper considers the problem of active object recognition using touch only. The focus is on adaptively selecting a sequence of wrist poses that achieves accurate recognition by enclosure grasps. It seeks to minimize the number of touches and maximize recognition confidence. The actions are formulated as wrist poses relative to each other, making the algorithm independent of absolute workspace coordinates. The optimal sequence is approximated by Monte Carlo tree search. We demonstrate results in a physics engine and on a real robot. In the physics engine, most object instances were recognized in at most 16 grasps. On a real robot, our method recognized objects in 2–9 grasps and outperformed a greedy baseline.
منابع مشابه
Active Object Recognition via Monte Carlo Tree Search
This paper considers object recognition with a camera, whose viewpoint can be controlled in order to improve the recognition results. The goal is to choose a multi-view camera trajectory in order to minimize the probability of having misclassified objects and incorrect orientation estimates. Instead of using offline dynamic programming, the resulting stochastic optimal control problem is addres...
متن کاملDecentralised Monte Carlo Tree Search for Active Perception
We propose a decentralised variant of Monte Carlo tree search (MCTS) that is suitable for a variety of tasks in multi-robot active perception. Our algorithm allows each robot to optimise its own individual action space by maintaining a probability distribution over plans in the joint-action space. Robots periodically communicate a compressed form of these search trees, which are used to update ...
متن کاملMonte-Carlo Tree Search
representation of the game. It was programmed in LISP. Further use of abstraction was also studied by Friedenbach (1980). The combination of search, heuristics, and expert systems led to the best programs in the eighties. At the end of the eighties a new type of Go programs emerged. These programs made an intensive use of pattern recognition. This approach was discussed in detail by Boon (1990)...
متن کاملActive Reinforcement Learning with Monte-Carlo Tree Search
Active Reinforcement Learning (ARL) is a twist on RL where the agent observes reward information only if it pays a cost. This subtle change makes exploration substantially more challenging. Powerful principles in RL like optimism, Thompson sampling, and random exploration do not help with ARL. We relate ARL in tabular environments to BayesAdaptive MDPs. We provide an ARL algorithm using Monte-C...
متن کاملDeep Reinforcement Learning with Model Learning and Monte Carlo Tree Search in Minecraft
Deep reinforcement learning has been successfully applied to several visual-input tasks using model-free methods. In this paper, we propose a model-based approach that combines learning a DNN-based transition model with Monte Carlo tree search to solve a block-placing task in Minecraft. Our learned transition model predicts the next frame and the rewards one step ahead given the last four frame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.00095 شماره
صفحات -
تاریخ انتشار 2017